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Abstract

The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced
oxidizing processes, particularly by oxidizing via UV/H,0,. It is pointed out that, from a specific concentration, the hydrogen peroxide works as
a hydroxyl radical self-consumer and thus a decrease of the system’s oxidizing power happens. The determination of the process critical point
(maximum amount of hydrogen peroxide to be added) was performed through a “thorough mapping” or discretization of the target region, founded
on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational
region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation
between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis
the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between

the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the industry, optimization processes involve the mini-
mization or maximization of an objective function objective,
described in technical terms, economical terms or in both
aspects. In general, the decision variables are subject to
restrictions, being it of security, maximum and minimum oper-
ational limits or linked to the process modeling equations
[1].

Regarding the photooxidizing processes based on the
UV/H;0; action, it is pointed out that one of the economical and
process performance issues is related to the amount of hydro-
gen peroxide to be added in the process. However, a number
of process variables, such as pH and temperature of the reac-
tion media, concentration of the compounds to be degraded,
time of exposition to ultraviolet light and presence of inor-
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ganic salts [2] are factors that, isolatedly, influence the process
performance. In this case, the process becomes a system with
multiple variables and, in this sense, neural networks appear as a
modeling methodology that can be applied to multidimensional
systems.

In recent years, neural networks have been applied in various
areas in the chemical engineering and, concerning the advanced
oxidizing processes, it can be quoted the work of Pareek et al.
[3] in which it was studied the photodegrading of Spent Bayer
liquor, with the use of a feedforward-type neural network. Pear-
son correlation coefficients above 0.99 were obtained in this
work.

Slokar et al. [4] utilized Kohonen type neural networks for
modeling the Reactive Red 120 dye decoloration process, as a
function of the use of HyO,/UV.

Salari et al. [5] also applied the neural modeling technique
for treating waters contaminated with methyl tert-butyl ether
(MTBE) by the combined use of hydrogen peroxide and ultravio-
letradiation. In this work, the authors utilized a feedforward-type
network to predict the MTBE concentration after photooxidiz-
ing treatment, obtaining Pearson correlation coefficients equal
to 0.998.
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Nomenclature

[dye] dye concentration

__ absorbance, —absorbance; .
GD = absorbance, 1 decoloration degree
A predicted values of absorbance
Absorbance; absorbance after decoloration
Absorbance,, initial absorbance

ABr Acid Brown 75

cl constant of integration

Co number of neurons of the hidden layer

CP coefficient of correlation of Pearson

f transference function

F mass relation between the hydrogen peroxide
mass and the dye mass

k reaction constant

my initial hydrogen peroxide mass

mj dye mass

Mdye dye mass

MSE  mean square error

N number of sample points

ptr set of training (input)

R Pearson correlation coefficients

T real values of absorbance

T; temperature of each experiment

TO photooxidizing process operation time

TOC  total organic carbon

VH,0, hydrogen peroxide volume

wj the pondering weights of these signals or infor-
mation

Xi values of the inlet signals

X vector das Entradas ao Neur6nio

Vi the values predicted by the neural network

Y; real values

Greek letters

n Constante de momentum

A maximum wavelengths

Guimaraes and Silva [6] utilized a feedforward backpropaga-
tion neural network model for modeling the decoloration process
(via HyO2/UV) of an azo dye group, where it was inserted
structural characteristics of dyes such as the number azo bonds
and sulphonate groups and process operational characteristics
(temperature of the reaction system, pH, time of operation of
the reactor, concentration of dyes and hydrogen peroxide). The
model was classified as hybrid in relation to the nature of the inlet
variables (operational and structural) and Pearson correlation
coefficients of 0.96 were obtained.

Durén et al. [7] studied the degradation of the dye Reactive
Blue 4 through the photo-Fenton process, with adjustment of
the experimental data via the neural models. The mathematical
model reproduced the experimental data (with average response
values measured by the constants of reaction for the discol-
oration and mineralization processes) at an interval of reliance
from 82 to 86%.

The present work aimed the determination of an optimum
mass relation between the initial amount of hydrogen peroxide
and the amount of dye involved in the decoloration process.
For the analysis of this relation, was chosen the corante Acid
Brown 75, manufactured for industry BASF, widely used in the
industries textile and of leathers. It is observed that works related
to the degradation or discoloration of this corante had not been
found in the bibliography.

2. UV/H,0; process

It is widely accepted that the first step in the UV/H,0, pro-
cess is the attack of the photon against the hydrogen peroxide
molecule and the subsequent formation of hydroxyl radical *OH

[8]:
H,O; +hv— 2°0OH €))

High concentrations of H>O; do not necessarily favor the kinet-
ics of the reaction, for after the reaction starts, the steps of
propagation can be prevented by the excess of hydrogen per-
oxide. This excess can act as a hydroxyl radical self-consumer
[9], according to the reaction given by Eq. (2).

H,O, +°*OH — H,O + HO»* 2)

Besides water, reaction (2) produces the hydroperoxyl radical,
less reactive than the hydroxyl radical.

Thus, hydrogen peroxide in excess may react with the
hydroxyl radical and compete with the attack of this radical to
the dye in the solution during the photolysis [10].

Considering that the recombination reactions (Egs. (3)-(6)
may occur, there is the possibility of hydroxyl radical con-
sumption, decreasing the probability of the organic compounds
oxidation. Thus, a competition for the ultraviolet light starts.

H,0, +°*02H — *OH + H,O + O 3)
*OH + *OH — H,0, “4)
*OH + *OoH — Hy02,+ 0, (5)
*OH + *0,H — H,0 + O, (6)

The kinetics of the reaction is favored up to the HyO, addi-
tion critical point. The critical point is related to various factors
such as the amount of hydrogen peroxide added, reaction media
pH, UV radiation wavelength, dye concentration and structural
characteristics, besides other specific factors like the presence
of inorganic salts, which affect the reaction performance of the
hydroxyl radical.

3. Materials and methods

Hydrogen peroxide 30% (w/w) was used in all photooxidiz-
ing procedures and solutions of NaOH and H>SO4 at 0.5 eq/L
were used for the adjustment of the reaction mean initial pH.
The pH was kept constant during the reaction. Distilled water
was utilized in the composition of all processes.

The Acid Brown 75 decoloration was evaluated as a func-
tion of the absorbance measured every 5 min, via Femto 600
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Fig. 1. Acid Brown 75 molecular structure.

spectrophotometer, at the maximum absorbance wavelength
(430 nm), optimized from the dye absorbance spectrum in aque-
ous solution.

The mineralization extents were determined on the basis of
total organic carbon content measurements (TOC), performed
by using total organic carbon analyzer; TOC-ASI 5000A, Shi-
madzu.

Fig. 1 presents the structure of the dye studied.

The photooxidizing process was performed in a Germetec
GPJ 463-1 plug-flow reactor, with low pressure radiation source
of 21 W, and at the end of each experiment, the system, for
washing purposes, was filled with slight acid solution and recir-
culated.

Fig. 2 presents the laboratorial scheme utilized in the pho-
tooxidizing process.

After the discharge of the solutions and recirculation with
distilled water, the system was dismounted and the reactor filled
with nitric acid solution 10% (v/v) for cleaning. The temperature
in each experiment was kept constant through Optherm DC1
thermostatic bath, in 742 °C, where T is the temperature of
each experiment, within a range of 2245 °C.

pH and
Temperature
Sensor

A

Plug-fiow Reactor

e
Flow Direction

Pump

Fig. 2. Laboratorial scheme.

Table 1
Levels of the operational variables

pH TO (min) [dye] mg/L VH,0, (mL) T(°C)
Minimum (—1) 2 15 30 2 22
Maximum (+1) 11 150 100 22 45

Table 1 defines the levels of the operational variables utilized
in the experiments.

4. Artificial neural networks

Neural networks may be defined as “a set of mathematical
methods and computational algorithms designed to simulate the
information processing and the acquisition of knowledge on the
human brain”. The neural networks basic elements are the arti-
ficial neurons, synapses, neural weights, transference functions,
neural networks architecture and neural networks training [11].

In an analogy to the biological neurons, the artificial neurons
have a central processing structure (usually called net) and inlet
(dendrites) and outlet (axon) ramifications.

Not going deeper on the physical-chemical processes
involved in the transmission of information between the biolog-
ical neurons, the signal enters the neurons through the dendrites,
passes through the cellular body and is then transmitted to other
neurons of the network by means of the axons. The transmission
of the signal of a neuron to the dendrites of another neuron is
called synapse, which is basically the function of modulating
the signal exchanged between them. In the artificial neuron, this
modulation of the signal, or signal intensity, is represented by a
pondering factor called synaptic weight.

The value of the total signal that enters the neuron central
body is called net and can be estimated through the multiplica-
tion of the signal that comes into the neuron times the synapse
weight of this signal. As the neurons have a large number of den-
drites and, thus, being able to establish various synapses with
other neurons, the value of the total signal that comes to the
neuron can be mathematically represented by Eq. (7):

n
Net = Zwix,- (7
i=1

The neuron outlet, thus, is obtained as a function of the inlet
signal, that is, it can be considered that outlet = f(net), where fis
the transference function.

The transference function is necessary for the transformation
of the sum of the neurons inlet signals pondered weight in order
to determine the outlet signal value or intensity, being that one
of the most used functions is the sigmoidal function:

1
f(net) = 14 ot (3)

The function of linear activation for the outlet layer is ade-
quate for continuous phenomena, as for instance the oxygen
biochemical demand or absorbance decrease in decoloration
processes. The sigmoidal-type transference functions are nec-
essary to introduce non-linearity in the network.
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In order to determine the synaptic weight values a training
process is performed. The neural network training is a function
of the neural weights update, through a process called learning
through error corrections, where the values simulated by the
neural network are compared to the desired values. This way,
the objective is to determine the set of synaptic weights that
minimize an error function, like the mean square error (MSE)
equation defined by Eq. (9) [12]:

N

a2
6 = MSE = Z% ©)
i=1

The training algorithm named backpropagation refers to the way
the weights are adjusted, and this algorithm is also known as
Generalized Delta Rule.

In the Generalized Delta Rule, in order to minimize the mean
square error, the derivatives defined by Eq. (10) are estimated.

k de

% (10)
oW

The backpropagation algorithm utilizes the information of these
derivatives (gradient) for the moving on change of the weights
according to Eq. (11):

Wh0 + 1) = WPm) + u(-vwPm)) (1n

In Eq. (11), >0 is the network learning rate, which controls
the degree according to which the gradient affects the weights
change and n means the current iteration [13].

It is possible to improve the speed of convergence of the arti-
ficial neural network trained by the backpropagation algorithm
through the utilization of this momentum. The purpose of this
method is to add, when estimating the value of change of the
synaptic weight, a fraction proportional to the prior alteration.
So, the introduction of this term in the equation of adaption of
the weights tends to improve the stability of the learning pro-
cess, favoring changes in the same direction and impeding local
minimums. The addition of the term momentum to accelerate
the learning process and avoid local minimums is frequently
utilized in the neural modeling, suppressing the oscillation of
weights in valleys and ravines.

In such a way, Eq. (11) can be substituted by Egs. (12) and
(13):

AW ) = 201 =P X Py +nawPn -1 (2)

Wi+ 1) = Wm) + AW ) (13)

In Egs. (12) and (13) 0 <7 <1 is the momentum constant.

The neural network adopted in the present work comprises
three layers: inlet, hidden and outlet. Some theorems have
already been found out about the networks characteristics [13]:

(a) if a function consists of a finite collection of points, then a
three layer network is able to learn it;

(b) in case this function is continuous and defined in a compact
dominium, a three layer network is able to learn it, since
there are sufficient processing elements in the hidden layer.

5. Complete mapping by neural networks

An experimental design (2°) was implemented making up
32 experiments for the dye. The 5 min interval data collection
provided the formation of a neural network input matrix of 528
lines (samples) by 5 columns (process input variables) with the
addition of some random experiments. The addition of these
randon points was made in central and intermediate points to the
extremes of the variables. The output factor of a neural model
was constituted of 528 absorbance values in the range of [0,2].

The neural model input and output values were normalized in
such a way that the average value would be zero and the standard
deviation equal to 1.

The sample set deriving from the experiments was divided in
training (50%), validation (25%) and test (25%).

The feedforward neural model has been implemented in Mat-
Lab software, with the following characteristics:

e net.trainParam.goal = 1E—8; aimed training final error.

net.trainParam.Ir = 0.1; learning rate.

net.trainParam.show =25; screen actualization (epochs).

net.train.Param.mc = 0.87; momentum rate.

net.trainParam.Ir _inc =1.15; L.r. increment rate.

net.trainParam.lr_dec =0.75; Ir decrement rate.

net.trainParam.max_max_perf_inc=1.04; error maximum

increment.

net.performFcn = ‘mse’.

e net=newff(minmax(ptr),[co],
‘traingdm’).

{‘tansig’ ‘purelin’ },

Co represents the hidden layer number of neurons and ptr
stands for the network inlet values training set (dye concentra-
tion, pH, time of operation, temperature and H>O; volume). The
outlet variable was the solution absorbance.

A scheme for implementing the optimization process by
means of “complete” mapping of values simulated by the neural
model can be visualized in Fig. 3.

After the training and validation phases of the neural
model obtained, the mapping of the operational conditions
was performed. This phase comprised the discretization of all
possible process inlet variables. The multifunctional points dis-
cretized and simulated by the neural model generated discretized
absorbance values. The discretization period was equal to 0.01
when simulating the neural model obtained.

Once simulated the discretization process to obtain the
absorbance values, the linear regression (time of operation ver-
sus absorbance) was performed (least square method) for the
adjustment of the constant of reaction (k) in a pseudo-first order
model, mapping the values of this constant through the dis-
cretization of the inlet variables, up to the obtainment of its
maximum value of this constant.

The following restrictions were imposed during the training
phase and complete mapping or discretization.

22°C < T, <45°C (14)

30mg/L < [dye] < 100mg/L (15)
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Fig. 3. Implementation of the optimization process.

GD = 0.90 (16)
2<pH<I11 (17)
15 < TO < 150 (18)
2ml < Vig,o, < 22ml (19)

Thus, the objective was to determine the process inlet variables
values that provided the maximum value of the reaction con-
stant, with the restriction of being reached a decoloration degree
imposed as a maximum of 90% for this study.

The photooxidation is supposed to be a reaction of pseudo-
first order and the kinetics of color degrading can be expressed
by:

= _deye (20)

The integration of this expression produces:
In(Caye) = —kt + ¢ 21

From this expression, by linear regression, the values of the
constants of reaction kinetics were determined. These values
made the composition of the objective function to be mapped in
a discretized form by the neural model.

Table 2

Coefficients of correlation

Neurons hidden layer R (training) R (validation) R (test)
8 0.965 0.954 0.923

12 0.976 0.971 0.963

15 0.982 0.980 0.979

16 0.987 0.981 0.984

20 0.951 0.934 0.921

Contour Plot of K{(1/min)
10— N e g

pH
()]
|
!/

Fig. 4. Contour surface, ABr 75, T; =45 °C, 15<TO < 150.

Table 2 presents the results of the adjustments for the training
(50%), validation (25%) and test (25%) sets. The percentages
refer to the experimental data total set.

The values of the Pearson correlation coefficients above
0.98 for value predicted for absorbance and absorbance real
value indicate a good adjustment and prediction capacity for
the neural model. The neural model obtained (16 neurons in
the hidden layer) mapped a multidimensional space of the form
absorbance = ([dye], pH, T, TO, Vh,0,).

In order to avoid overtraining problems, the training was
interrupted when the error corresponding to the validation set
became higher than the error corresponding to the training set
and, according to this criteria, a number of epochs equal to 49
was obtained.

The graphic verification of the H,O, addition critical behav-
ior was performed through surface graphs. The k reaction
constant maximum value was reached experimentally for values
of F in the range of 50-60, according to Eq. (22):

F="0 22)
mi

In Eq. (22), mg represents the initial hydrogen peroxide mass

and m stands for the dye mass.

The Fig. 4 exemplifies the contour surface graph obtained for
experimental values.

Table 3 shows some results of the pseudo-first order adjust-
ment, where the best performances of the process around a mass
relation close to F'=50.449 is verified.

Table 3

Constant of pseudo-first order

F K (min~1) R
3.2450 0.0625 0.9989
9.9990 0.0971 0.9864
16.6650 0.1253 0.9985
26.7170 0.1296 0.9966
33.0330 0.1326 0.9912
50.4490 0.1564 0.9958
53.2216 0.1481 0.9982
56.3206 0.1386 0.9956
73.6900 0.1112 0.9975
100.0900 0.1097 0.9965
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Table 4

Some results of the complete mapping

pH Mdye Freal F, predicted
9.8 100 50<F<60 55.55
10.0 120 50<F<60 51.33
10.5 130 50<F<60 52.22
10.1 140 50<F<60 58.00
9.9 150 50<F<60 50.00
9.6 200 50<F<60 57.89
9.4 250 50<F<60 58.90
10.0 300 50<F<60 53.76

In Table 4, some results from contour surfaces graphs are
presented, for different operational conditions.

Table 5 presents some results obtained during the processo f
discoloration of the Abr 75, where the efficiency of the process
in function of the utilization of UV/H;0O; is verified. Table 5
also presents percentage of reduction of the TOC, indicating the
degree of mineralization of the dye proving that the method may

be considered ecologically applicable.

The effects of the variation of the levels of the inlet variables
can be observed in Fig. 5, where it is noticed that the higher
degree of discoloration obtained occurred in the high pH, tem-
perature and UV reactor time of operation levels. Concerning

Table 5
Degree of discoloration and mineralization
pH Temperature V(H,0,) [Dye] TO GD %TOC
1 1 1 1 1 100 96.00
-1 1 -1 -1 -1 95.02 90.27
-1 -1 1 —1 1 100.00 96.89
1 -1 1 1 1 98.82 93.89
-1 —1 -1 —1 1 100.00 94.21
-1 1 1 1 -1 85.70 75.54
-1 -1 -1 1 —1 90.20 80.29
1 -1 1 —1 -1 93.97 82.56
1 1 1 1 —1 99.74 89.00
-1 1 -1 1 1 92.13 81.09
-1 1 -1 1 —1 86.49 75.66
—1 1 1 —1 1 93.95 83.62
1 -1 -1 1 -1 77.26 69.02
1 1 1 —1 1 100.00 92.01
1 -1 1 1 -1 88.19 80.98
1 -1 1 —1 1 100.00 91.98
-1 -1 -1 1 1 93.57 86.09
1 -1 -1 1 1 98.67 90.77
-1 1 1 -1 -1 87.97 85.33
-1 1 1 1 1 89.54 86.86
1 1 -1 -1 -1 99.76 98.78
1 -1 -1 —1 —1 98.56 94.56
1 -1 -1 -1 1 98.35 89.90
1 1 1 —1 —1 100.00 95.62
-1 -1 1 -1 -1 77.22 67.06
-1 -1 1 1 1 98.27 89.34
1 1 -1 -1 1 100.00 97.00
-1 -1 -1 —1 —1 82.50 81.23
-1 -1 1 1 -1 85.80 74.78
1 1 -1 1 1 100.00 98.12
1 1 -1 1 -1 99.62 92.34
-1 1 -1 —1 1 90.25 88.00

Main Effect Plot (data means) for Decoloration
V(H202)

pH Temperature
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Fig. 5. Main effects—degree of discoloration.

the hydrogen peroxide, it is noticed that a small reaction yield
decrease happened when the value changed from the smallest
to the highest level and the same happened with the dye con-
centration. This result, in relation to the volume of hydrogen
peroxide added, was an indication of a maximum hydrogen per-
oxide value to be added, from which the process of discoloration
loses yield.

In case that it is not kept constant, it is important to point out
that the pH tends to an acid or slightly acid means during the
process of discoloration and that the pH variation is due to the
increase of [H*] concentration. The discoloration rate decreases
as the production of hydroxone ion increases, what indicates that
acid products can be resistant to the color degradation.

However, the characteristic of higher yield of the procsee of
discoloration in alkaline pH is not prevalent for all dyes, for the
work of Galindo and Kalt [14] can be cited, in which the process
of discoloration was more effective in acid means. Neverthless,
the authors report that for the dye Acid Orange 52 showed bet-
ter performances of discoloration in neutral or slightly alkaline
means.

Muruganandham and Swaminathan [15] report that the
decrease of performance in alkaline means. The conjugated base
of the hydrogen peroxide (HO, ™) can react with the hydroxyl
radical, consequently reducing the rate of discoloration, accord-
ing to Egs. (23) and (24):

H>O; + HO2™ — H0 + Oy + *OH (23)

*OH+ HO;™ — H O+ 0Oy~ (24)

Chu and Ma [16] noticed that for poliazo dyes, when the
pH is low, the amount of radicals *OH are inadequate for the
simultaneous attack to the —-N=N-— bonds of the dye molecule
and, thus, the reaction of photodiscoloration for the poliazo
dye tends to be incomplete in low pH. On the other hand, this
effect is not observed, for the hydroxyl radicals are in higher
amount. The authors also noticed that the 7 bond electrons are
usually more diffuse and less steadily linked to the nitrogen
atoms. Thus, they are particularly more susceptible to elec-
trophilic agents like the hydroxyl radicals. However, at low pH,
H™ can interfere in the poliazo dyes conjugated system through
the formation of positively charged central amines, which tend
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to decrease the density of the azo groups and then describe the
reactivity in relation to the hydroxyl radical, according to Eq.
(25):

I
e e
N=NLN+-N (25)

Theoretically, the rate of discoloration in alkaline pH can
increase due to the neutralization of the H* ion generated in the
photodiscoloration process. Shu et al. [10] enhance this result
pointing out that the relationship of better performance for the
initial pH condition depends on the type of dye to be degraded.
In the study, for the Acid Orange 5, the authors report the best
yield of the reaction for pH close to value 2.

Thus, each dye structural condition or conditions of com-
pounds present together with the dyes can affect the behavior of
the reaction in relation to the pH, and consequently the perfor-
mance of the process of discoloration.

Some aspects must also be emphasized concerning the
amount of HyO, added. It is widely considered that the first
step in the HyO»/UV process is the attack of the photon to the
hydrogen peroxide and the formation of radicals [8], according
to Eq. (26):

H>0;, 4+ hv — 2°0OH (26)

High peroxide concentrations do not necessarily favor the kinet-
ics, for after the initial step the steps of propagation can be
impeded by the excess of peroxide acting as an *OH radicals
self consumer [9], reaction given by Eq. (27):

H,0, +°*0H — H,0 + HO". 27)

Thus, hydrogen peroxide in excess can react with the hydroxyl
radical and compete with this radical attack to the dye in the
solution by the time of photolysis [10,17], for the recombina-
tion reactions may occur consuming the hydroxyl radical and
decreasing the probability of occurrence of the oxidation of
organic compounds, So, a competition for the ultraviolet light
starts: there is a critical point for the hydrogen peroxide con-
centration value. Up to this point, the kinetics of discoloration is
favored by the increase of hydrogen peroxide concentration. This
critical point is related to various factors such as the amount of
hydrogen peroxide added, reaction mean pH, UV radiation emis-
sion wavelength, dye concentration and specification, besides
each process other specific factors linked to the utilization of
other dyes as, for instance, the addition of intermediates in
the dyeing process, as, for example, the presence of sodium
chlorides and sulphates.

6. Conclusions

The implementation of a neural model and the optimization
through complete mapping of the dominium of the independent
variables in a process of decoloration by UV/H, 0, is presented
as a promising technique in the optimization of processes with
multiple inlet variables.

The neural model reached good prediction capacity with
Pearson correlation coefficients above 0.98 for the training, val-
idation and test sets.

From this neural model, the discretization of all process vari-
ables could be performed, which made possible the search for the
Acid Brown 75 dye decoloration process critical point through
the use of UV/H0;. The determination of the critical point,
or maximum amount of hydrogen peroxide to be added as a
function of the dye initial mass, was established in a 50 < F < 60
interval, coinciding with the real values obtained in the experi-
ments.
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